
A first year progress report on:

Development of a Dynamically Configurable,
Object-Oriented Framework for Distributed,
Multi-modal Computational Aerospace
Systems Simulation

Abdollah A. Afjeh, Ph.D.
John A. Reed, Ph.D.

Department of Mechanical. Industrial and Manufacturing Engineering
The University of Toledo

October 30,2000

Summary
This report describes the progress made in the first year (Sept. 1, 1999 LO Aug. 3 1,2000) of
work at The University of Toledo under the NASA Information Technology (IT) Program
grant number NAG-1-2244. This research is aimed at developing a neiv and advanced
simulation framework that will significantly improve the overall efficiency of aerospace
systems design and development. This objective will be accomplished through an
innovative integration of object-oriented and Web-based technologies ivith both new
and proven simulation methodologies. The basic approach involves Ihree major areas of
research:

Aerospace system and component representation using a hierarchical object-oriented
component model which enables the use of multimodels and enforces component
interoperability.

Collaborative software environment that streamlines the process of developing,
sharing and integrating aerospace design and analysis models.

. Development of a distributed infrastructure which enables Web-based exchange of
models to simplify the collaborative design process, and to support computationally
intensive aerospace design and analysis processes.

Research for the first year dealt with the design of the basic architecture and supporting
infrastructure, an initial implementation of that design, and a demonstration of its
application to an example aircraft engine system simulation.

NAG-1-2244 1st Year Report I October 30, 2000

Year 1 Accomplishments
Work was begun in several areas during the first year of this three year grant. LIajor
results are summarized below. A more comprehensive description of the methodology
and initial accomplishments, along with an overall vision statement of our long term
research goals, was published in Ref. 1.

Common Model Framework
An object-oriented domain framework for representing aerospace components. systems
and subsystems has been developed. The framework, which we call the Common Model
Framework (CMF) , provides the foundation for the Denali' aerospace simulation
system. The framework formalizes an approach for abstracting aerospace domain
physical structure and mapping it to the computational domain. As shown in Figure 1,
aerospace systems, such as an aircraft, are hierarchically decomposed (Fig. lb) into
subsystems and components (e.g., fuselage, engines, vertical stabilizer, etc.), Lvhich are
then abstracted using a control volume approach (Fig. IC). The control volumes provide
both a physical geometry representation as well as a convenient mechanism for
mathematical modeling. Each component can be further decomposed to identiify more
basic components. The most basic components may be represented in the computational
domain by an object class. Following the Denali CMF architecture, the more basic classes
can be instantiated and the various objects combined to form more complex objects. This
object composition provides a powerful and flexible mechanism for modeling and
simulating aerospace systems, allowing complex aerospace systems to be composed in
the same familiar manner as the physical system.

There are four basic entities in the Denali architecture: Element, Port, Connector and
DomainModel (see Fig. Id). The JavaTM interface Element represents a control \.olume,
and defines the key behavior for all engineering component classes incorporated into
Denali. It declares the core methods needed to initialize, run and stop model execution, as
well as methods for managing attached Port objects. Classes implementing this interface
generally represent physical components, such as a compressor, turbine blade. or
bearing, to name a few. However, they may also represent purely mathematical
abstractions such as a cell in a finite-volume mesh used in a CFD analysis. This flexibility
permits the component architecture to model a variety of physical systems.

An Element may have zero or more Port objects associated with it. The Port interface
represent a surface on a control volume through which some entity (e.g., mass or energy)
or information passes. Ports are generally classified by the entity being transported
across the control surface. For example, a Compressor object might have two FluidPort
objects-representing the fluid boundaries at the Compressor entrance and exit-and a
StructuralPort object, representing the control surface on the Compressor through
which mechanical energy is passed (from a driving shaft).

1. Not an acronym.

NAG-1-2244 1st Year Report 2 October 30.2000

Control
Volume /

J
Control k . _.- . - _ _ _ Volume

"
I

_- -

/

Structural
Port

4
:
1

I : Fluid
Element : Port

Figure 1: Mapping of aerospace physical domain to computational framework.

NAG-1-2244 1st Year Report 3 October 30, 2000

The common boundary between consecutive control volumes is represented by a
Connector object. The interface Connector permits two Element objects to
communicate by passing information between connected Port objects (see Fig. ld). It is
also responsible for data transformation and mapping in situations where the data being
passed from Ports is of different type. The need for such data transformation can range
from simple situations, such as conversion of data units, to very complex ones involving
a mismatch in model fidelity (e.g., connecting a 2-D fluid model to a 3-D fluid model) or
disciplinary coupling (e.g. mapping structural analysis results from a finite-element
mesh to a finite-volume mesh used for aerodynamic analysis). For all but the simplest
cases, the algorithms needed to perform the data transformation or mapping will tend to
be very complex. To improve reusability, Connector delegates transformation/mapping
responsibilities to a separate Transform object (see Fig. Id) which encapsulates the
necessary intelligence to expand/contract data and map data across disciplines.

The DomainModel represents the mathematical model used to define component
behavior. During component design and analysis, many different models (i.e.,
multimodels) are used. During preliminary design the models are relatively simple and
may be solved analytically or using basic numerical methods. However, models used in
latter phases of design can be quite complicated. In these cases, approximate solutions
are obtained by discretization of the equations on a geometrical mesh and applying
highly specialized numerical solvers. The presence of these complex mathematical
models and the numerical tools needed to solve them suggest that it is desirable to
encapsulate these features and remove them from the Element structure. This enhances
the modularity of Element, allowing new Element classes to be added without regard to
the mathematical model used, and conversely to add new models without affecting the
Element class. To achieve this, Denali utilizes the Strategy design pattern-to encapsulate
the mathematical model in a separate object. The benefit of this pattern is that families of
similar algorithms become interchangeable, allowing the algorithm-in this case the
DomainModel-to vary independently from the Elements that use it. This admits the
possibility of run-time selection of an appropriate DomainModel for a given Element:
however, this is currently not used in Denali. Furthermore, encapsulating the
DomainModel in a separate object also encourages the “wrapping” of pre-existing,
external software packages. For example, the Fan DomainModel in Fig. Id might “wrap”
a pre-existing three-dimensional Navier-Stokes or Euler flow solver to provide steady-
state aerodynamic analysis of fluid flow within the Fan. This approach allows proven
functionality of existing software analysis packages to be easily integrated within an
Element.

The standard object interfaces of the Denali CMF ensure that each component object
interoperates with other component objects. This is essential for providing a stable
modeling environment which allows complex models to be developed using object
composition and class inheritance. Furthermore, the standard interfaces of the CMF
architecture provide a “pluggable” architecture wherein new components can be added
at runtime.

NAG-1-2244 1st Year Report 4 October 30,2000

As an example application of the CMF, a model of a the NASA/GE Energy Efficient
Engine (EEE) gas turbine aircraft engine was created. Elements representing the inlet,
fan, compressor, combustor, shafts, turbines, nozzle and ducts in a turbofan engine were
developed. The DomainModel for each Element was developed using a zero-
dimensional mathematical treatment. Furthermore, only an aerothermodynamic
disciplinary analysis was used. At this level of fidelity and discipline, component
behavior was defined by the unsteady, space-averaged forms of the aerothermodynamic
conservation equations. Empirical data, in the form of performance maps, were used to
define operating behavior for rotating components, such as Compressors and Turbines.
The component objects were combined using appropriate zero-dimensional fluid and
mechanical Port and Connector objects. A Newton-Raphson numerical execution
scheme (also provided as part of the Denali system) was used to sole the model
equations and simulate both steady and unsteady engine operation. Results of the tests
were validated against other existing FORTRAN gas turbine engine simulation
programs.

Connection Services Frame work
Aerospace design and analysis requires the interaction of many people at different
geographic locations. Even if these individuals are part of the same company, today’s
increasingly international business environment and corporate structures requires us to
assume that the participants may not be at the same location. Moreover, strategic
partnerships between companies (even those competing in the same business domain)
are becoming more common place requiring additional interaction across company
boundaries. As a result, it is important that our simulation framework enable users to
collaborate by sharing models and data in a heterogeneous Lvork environment.

Denali supports the exchange of models through the use of mobile code. Mobile code is
defined as program code which can be transferred from one computer to another and
executed (without recompilation) on the receiving computer. An example of this is the
Java byte-code which is executed on the receiving machine by a Java Virtual Machine
interpreter. Denali utilizes this feature to allow designers to create, compile, verify and
share Java-based component models. Following the design guidelines specified by the
CMF, aerospace components are created, placed on a Web-server and downloaded to a
Denali client. Once loaded to the client, the model can be combined without additional
programming effort to form a new model.

In aerospace design and analysis, as in many other engineering domains, access to
distributed resources is critical. The computationally intensive nature of higher fidelity
analysis codes (such as Computational Fluid Dynamics) require access to high
performance supercomputers or networks of workstations. Furthermore, the use of
legacy code in aerospace design and analysis often require access to codes that are
constrained to run on specific architectures or operating systems. As a result, it is
important that our simulation framework enable users to access the appropriate
computing resources for the target application.

NAG-1-2244 1st Year Report 5 October 30. 2000

The Denali Connection Services Framecvork (CSF) provides the necessary infrastructure
to enable transparent access to distributed resources using both Web-based exchange of
models, and distributed object service. Web-based models-models ivritten entirely in
Java-are created, compiled, verified, tested and placed on an HT’TP web server where
they can be accessed from a Denali client. Non-Java models, such as legacy FORTRAN
software, which are fixed to a particular location due to code size, computing
architecture or proprietary reasons, are placed on remote machines and wrapped by a
Java object. This wrapper defines an interface to the legacy code and acts as a proxy,
enabling the legacy code to be viewed as a local object. As with the ICeb-based models,
the Java wrapper for the remote legacy code is placed on a Web sener so that it may be
downloaded to the Denali client.

The Denali client, positioned on a user’s workstation or personal computer, locates
available Web-based and remote models by querying one or more n.ell-known naming
or directory service. Using a Component Browser, a user can browse the objects and data
stored in a naming or directory service (see bottom-right corner of Fig. 2). Denali
currently supports access to common naming and directory services. such as NDS,
LDAP, CORBA Naming Service (COS Naming), and RMI Registry. through the Java
Naming and Directory Interface UNDI). JNDI is an API that provides an abstraction that
represents elements common to the most widely available naming and directory
services. JNDI also alloLvs different services to be linked to together to form a single
logical namespace called a federated naming service. Using the Component Browser,
Denali users are able to navigate across multiple naming and direcrory services to locate
simulation data, objects and components.

Currently, we mainly use an LDAP (Lightweight Directory Access Protocol) service
which provides both naming (objects are referred by their name) and directory (objects
are stored in hierarchies) access. We utilize the OpenLDAP software. an open-source
implementation of the LDAP protocol, running on a UNIX workstation in our lab.
Rather than storing the model objects in the LDAP service, we chose to store only
attributes of the component. This reduces the need to store and transfer large objects
from the LDAP, and allo\vs models to be located by searching for ke_ywords
corresponding to certain attributes. For example, for each model component, we define
the class name, the model author, model creation and expiration date, and the LRL of
the model code, to name a few. When a component is selected from the LDAP, the Java
byte-codes are downloaded from the Web server defined by the component’s LRL
attribute. On the client machine, the byte-codes are dynamically loaded and used to
create an instance of the model.

For security purposes, the Component Browser requires users to authenticate
themselves before they can retrieve any information from a naming or directory service.
Once authentication has been successfully completed, the user can browse or search
(using attribute keywords) the entire namespace (subject to any authorization
restrictions). Authentication and authorization capabilities are provided through JNDI
and the Java Authentication and Authorization Service UAAS) framework. These tools
allow the Component Browser to remain independent from the underlying security

NAG-1-2244 1st Year Report 6 October 30, 2000

services, which is an important concern when working in a heterogeneous computing
environment such as the Web.

Access and utilization of both Web-based and remote legacy models ha\.e been tested
successfully using the Denali CSF. Component models for the EEE gas [urbine engine
model were placed on a Web server (rnimel) located in our lab. Each component model,
with the exception of the Combustor, was defined as a Web-based model (i.e., written in
Java). For this test, a FORTRAN Combustor model, representing non-Java legacy codes,
was written, compiled and placed on a second machine (mime2). A Java ivrapper, acting
as a proxy for the Combustor model, was written, compiled and placed on the Web
server (mime 1). Deployment of each component also included registering component
attributes with the LDAP service running on a third machine (mime3). A Denali client,
operating on a fourth machine (mime4), was then used to access and construct the EEE
engine system model using the Denali Visual Assembly Framework, Lvhich is described
below.

Visual Assembly Framework
The Visual Assembly Frameic-ork (VAF) provides a configurable, extensible graphical
interface for constructing and editing Denali component and system models. Aerospace
component objects, placed on Web servers and registered in the LDAP service are
graphically manipulated in the VAF to create new models, or edit existing models. Icons,
representing individual engine components (i.e., Elements), are selected from the
Component Browser, dragged into a workspace window, and interconnected to form a
schematic diagram (see Fig. 2). Dragging an icon from the Component 3rowser to the
workspace window causes the selected software component to be doimloaded from the
Web server to the client machine. Components comprised entirely of Ja\.a classes are
downloaded from a Web server to the local file system where the byte-codes are
extracted from the JAR file, loaded into the Java Virtual Machine and insIantiated for use
in Denali. Components developed in other programming languages are not
downloaded, but remain on the server. Instead, the proxy object, representing the
component, is downloaded and used to connect to the remote component using the Java
Remote Method Invocation (RMI) substrate.

Denali supports the creation of hierarchical component models, and an icon can
represent both a single component or an assembly of components. A component with
subcomponents is called a composite or structured component. Components that are not
structured are called primitive components, since they are typically defined in terms of
primitives such as variables and equations. Composite components are represented by a
CompositeElement class, which is part of the Element hierarchy. The class structure,
based on the Composite design pattern, effectively captures the part-ivhole hierarchical
structure of the component models, and allows the uniform treatment of both individual
objects and compositions of objects. Such treatment is essential for pro\-iding the object
interoperability needed to perform Web-based model construction by composition.

NAG-1-2244 1st Year Report 7 October 30,2000

Figure 2 shows a composite model representing an aircraft turbofan engine. The icon
labeled Core is a composite of components which are displayed in the lower schematic.
Each icon has one or more small boxes on its perimeter to represent its Ports. Connecting
lines are drawn between the ports on different icons by dragging the mouse. A
Connector object having the correct Transform object needed to connect the two ports is
created automatically by Denali. Each icon has a popup menu which can be used
“customize” the attributes of its Element, Port and DomainModel objects. LVhen
selected, a graphical Customizer object is displayed (see upper-right corner of Fig. 2),
which can be used to view or edit the selected objects attributes. The visual assembly
interface also provides tools for plotting (see the lower-left corner of Fig. 2), editing files,
and browsing on-line documentation.

Using the VAF interface, the EEE component models were successfully downloaded
from the Web server (mimel),and combined graphically to form an EEE engine model in
the VAF. A Newton-Raphson numerical execution scheme (provided as parr of the
Denali system) was used to solve the system of equations and simulate both steady and
unsteady engine operation. Results of the tests were validated against other exis[ing
FORTRAN gas turbine engine simulation programs.

Currently the VAF interface is implemented as a Java application rather than a Java
applet. This was done for two reasons: 1) Java applications are easier to develop [han
applets, since they do not require explicit security controls (i.e., signing) : and. 2) browser
technology needed to run applets is not up-to-date. Also, a new product. called Java Web
Start is now available (in beta form) which allows users to download Java applicarions
which run on the desktop, in much the same manner as applets, but do not require a
Web browser. We are currently experimenting with the Java Web Start to evaluate its use
with Denali.

Publications Resulting from Work Supported by This Grant
[l] Reed, J. A., Follen, G. J., and Afjeh, A. A., “Improving the aircraft design process

using Web-based modeling and simulation, “ ACM Transactions on Modeling and
Computer Simulation, Vol. 10, No. 1,2000, pp. 58-83, (special issue on Web-based
Modeling and Simulation).

Plans for Year 2

Common Model Framework
The majority of work in year 2 will focus on the addition of geometry data to models.
Specifically, we plan to work on providing direct access to CAD native geometry
data. Our plan is to use a middleware layer being developed at MIT to alloiv us to
access a variety of CAD packages using a common API. Access to CAD geometry
will allow us to enhance our visualization capabilities.

NAG-1-2244 1st Year Report 8 October 30, 2000

We plan to test integration of several database management systems with Denali.
This had been slated for yr. 1, but was postponed until yr. 2 to more fully explore the
use of new approaches to saving models, such as using XML.

We also plan to obtain existing airframe models for study. These will be integrated
within the Denali simulation system in year 3.

Connection Services Frame work
We will continue to improve non-mobile code services. Specifically, we are working
on developing generalized specifications for wrapping legacy codes common in the
aerospace domain. These include CFD and FEA tools, as well as numerical solvers
and optimizers.

Visual Assembly Framework
We will work on integration of CFD and geometry visualization. We will examine the
possibility of integrating an existing visualization tool, or creating a new Java-based
visualization tool to display geometry and flow data.

We \vi11 continue to enhance and refine our VAF design to make it more intuitive and
easier to use. We hope to provide a beta version of the Denali system to users at
aerospace companies and NASA centers for evaluation. Feedback from these beta
testers will be used to enhance the Denali VAF (and other parts of Denali).

NAG-1-2244 1st Year Report 9 October 30, 2000

.I I I--- I I

Stator lng le ‘3eg)
0 0 -_ - __

-3 0 - ,.
-6 0 -
-9 0 - /

-120. I

-15 0 - /’
-18 0 -
-21 0 .
-24 0 ,’

/

,
0 0 1 0 2 0

0 0 , - 2 4 9 9
1 3 -2499
20, - 1 7004 I lime (seconds) 2 00

Transient Value - 1 7004

--_-A Reset Add Point I

Figure 2: Denali Visual Assembly interface showing integration of engine model.

October 30.2000 NAG-1-2244 1st Year Report 10

